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Disclaimer. The following lecture notes accompany the lecture Mathematical
Foundations of Cryptography and were taught in the Winter Term 2022/23
at Graz University of Technology. While I don’t teach the course anymore,
I regularly update the notes to accompany other classes. The class is aimed
at master students from the degree programs in Computer Science, Software
Engineering, and Information and Computer Engineering students, which is why
some detail was sacrificed for easier understanding or illustrative exercises. We
finished after covering Section 5, but I extended the script with some personal
notes over time.

1 Motivation

Lattices are everywhere! Solid-state physics describes lattices as crystalline 3-d
structures. Sodium chloride(see Figure 1), which we use every day to season
our food, is also a good example of a real-life lattice.

Figure 1: A three-dimensional lattice,
better known as table salt. From: The-
oretical study of damage accommodation
in salt subject to viscous fatigue, Cheng
Zhu, Chloé Arson and Amade Pouya,
Proceedings of the Conference on Me-
chanical Behavior of Salt, SALTMECH
VIII, May 2015.

Another application is number
theory, which studies the relation-
ships between different numbers,
which is useful in the context of the
RSA algorithm. Lattice methods are
used for cryptanalysis of this struc-
ture. You may remember the LLL
algorithm from the cryptanalysis lec-
ture.

In addition, can use lattices to
study group theory in greater detail:
lattices are a great introduction to al-
gebra and group theory. Moreover,
you interact with them daily: Their
non-commutative variant is used for
coding theory, the commutative vari-
ant for lattice cryptography, both of
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which are applications for cryptography as there are several conjectured hard-
ness assumptions, which are believed to be resistant against cryptanalysis by
quantum computers. Lattice cryptosystems are used for their efficiency, simplic-
ity, and parallelizable properties. They have strong security guarantees and ex-
cellent hardness assumptions. We can build efficient hash functions [BBL+15],
signature schemes [HHGP+10; LDK+20; PFH+20], encryption and key en-
capsulation schemes [HHGP+10; SAB+20; CDH+20; DKR+20] and advanced
constructions, like fully homomorphic encryption [Bra12; FV12], from lattice
schemes.

To illustrate how useful lattices are in cryptography, consider the third round
of the NIST PQ not-a-competition: 3

4 of the key encapsulation submissions and
2
3 of the signature candidates were lattice-based. The single finalist KEM is
Crystals-Kyber and based on lattices. For digital signatures, two out of three
finalists are lattice-based, the third candidate, Sphincs+, was largely added
due to a wish for diversification to not solely rely on lattices.

To conclude the introduction, lattices are so useful because they are an
abstract, algebraic structure. In the accompanying lecture, we want to study
them further and learn about the fundamentals and theorems.

1.1 Credit and further reading

Several figures were taken from the library TikZ for cryptography (https://
www.iacr.org/authors/tikz/).

I used the following references to compile these notes:

� An Introduction to Mathematical Cryptography by Jeffrey Hoffstein,
Jill Pipher, J.H. Silverman is a great resource for the entirety of this
course.

� The LLL Algorithm is an excellent book by Phong Q. Nguyen, Brigitte
Vallée (Eds.), and a really good resource to understand the algorithm
fully.

� A decade of lattice cryptography by Chris Peikert[Pei16], probably the
main place to look if you want to learn more about lattice cryptography.

� The lecture notes of Daniele Micciancio’s course CSE206A: Lattices
Algorithms and Applications (Spring 2014) (https://cseweb.ucsd.edu/
classes/sp14/cse206A-a/index.html) are good.

� Daniel Dadush has an excellent course on lattices from a mathematical
perspective. The lecture Please find the lecture here https://homepages.
cwi.nl/~dadush/teaching/lattices-2018/. I strongly encourage you
to read the lecture notes.

� The lattice club has a great, general repository on lattice cryptography,
courses, and surveys, as well as PhD Theses and more resources, like
implementations and tools. See here: https://thelatticeclub.com/
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In addition, a part of these lecture notes is based on slides by Lukas Helminger
and Maria Eichlseder.

2 Applications

To further motivate the study of lattices we’ll start with a brief discussion
of cryptographic applications. They are further described in several different
lectures, denoted in cursive.

2.1 Fully Homomorphic Encryption

Fully homomorphic encryption is often branded as computing on encrypted data.
Classical methods based on modular multiplication [RSA78; ElG85] or addi-
tion [CF85; Pai99] enable partially homomorphic encryption. In an ideal fully
homomorphic encryption setting, we can perform arbitrary multiplications on
the plaintext and the ciphertext that are also applied to the plaintext.

Privacy Enhancing Technologies, VO/KU, 705.054/705.055 gives an excel-
lent practical introduction to partial and homomorphic encryption.

2.2 Attribute-based Encryption

In attribute-based encryption, the secret key and resulting ciphertext are de-
pendent on certain attributes defined by the protocol functionality. The de-
cryption of the ciphertext is only possible if the key used for the decryption
has the same attributes. A nice popular science article on ABE for digital wal-
lets is here (https://ntt-research.com/ntt-research-cis-cryptography-
attribute-based-encryption/).

This is further discussed in Selected Topics in Information Security- Modern
Public Key Cryptography, VU, 705.008.

2.3 Post-Quantum Cryptography

As mentioned in the beginning, it seems like cryptosystems using noisy systems
of equations are not only secure against adversaries with quantum computers,
but also efficient enough to be deployed as a replacement for today’s crypto-
graphic protocols based on discrete logarithm and factoring problems.

This is discussed in Cryptography, VO/KU, 705.066/705.067 and Selected
Topics in Information Security- Modern Public Key Cryptography, VU, 705.008.

2.4 Cryptanalysis

Lattices are extensively used in cryptanalysis to (attempt to) attack cryptosys-
tems by using approximation algorithms. For example, Bleichenbacher’s attack
recovering m given c ≡ me uses lattices to find a well-formed plaintext message
from the ciphertext [Ble98].
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Consider taking Cryptanalysis, VO/KU, 705.068/705.069 to learn more
about this.

3 Intuition

Figure 2: Points in a discrete, two-
dimensional lattice. https://www.iacr.

org/authors/tikz/

Consider the (fairly boring) ba-
sis vectors (1, 0) and (0, 1) in Fig-
ure 2. Combining these vec-
tors is sufficient to traverse all
integer coordinates and there-
fore generates the lattice Z2, the
two-dimensional integer lattice.
Notation-wise, a power will al-
ways describe the dimension, so
e.g. R11 would be the eleven-
dimensional lattice over the re-
als. A subscripted number will
denote the denominator, e.g. the
lattice Z4 is the integer lattice
mod 4. This notation can be
combined: the lattice Z15

3 is the
15-dimensional lattice over the integers mod 3.

Based on the lattice example in Figure 2, we will now define a general lattice.

Definition 3.1 (Lattice). An n-dimensional lattice L is any subset of Rn that
is both:

� An additive subgroup (Remember, this means that adding two elements
from the subgroup together will always produce another element of the
subgroup).

� Discrete.

The lattice L is generated a basis, which are linearly independent vectors
v1, . . . , vn. The elements of the lattice are a set of linear combinations of
v1, . . . , vn with coefficients in Z is denoted as

L = {a1v1 + · · ·+ anvn : a1, . . . , an ∈ Zk}.

In addition to all these combinations, note that 0 ∈ L due to the combination of
0 ∗ v1 + · · ·+0 ∗ vn. It also serves as a nice starting point! You may notice that
the basis is not necessarily unique. This will be important when we construct
cryptographic primitives and protocols.

Let’s look at another, slightly more interesting lattice in R2. It is two-

dimensional, so we have two basis vectors v1 =

(
1
0

)
, v2 =

(
1/4√
2

)
. The vectors

span the lattice in Figure 3.
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The number of basis vectors is the rank of the lattice. The number of
linearly independent vectors n is the dimension. We restrict ourselves to full-
rank lattices, where k = n.

R

R

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3: The lattice defined by v1

and v2, over the reals.

While lattice dimensions are usually
quite high(their exact parameterization
depends on the use case), we will largely
work with very low dimensions in this
class as we will compute on the black-
board. If you want to play around with
how many dimensions you need, I’d refer
you to the Lattice Estimator: https://

lattice-estimator.readthedocs.io/.

3.1 Vector Spaces

Before we dive into vector spaces, we will
do a quick detour into vector spaces. A
vector space V is a subset of Rm that is
closed under addition and under scalar multiplication by elements of R. A linear
combination of the vectors v1, . . . , vk is any vector of the form

w = α1v1 + · · ·+ αkvk, with α1, . . . , αk ∈ R.

Definition 3.2 (Span). The linear space formed by all vectors {v1, . . . , vk} is
called the span. In particular, a lattice can be defined as the span of its basis
vectors.

Remember that vector spaces allow real combinations, contrary to lattices:
0.17·v1−1.72·v2 is a valid combination. Lattices only allow integers. Regardless,
we still briefly discuss the general subject of vector spaces. It will help you to
feel familiar with lattices and with more advanced constructions.

Before, we mentioned that the vectors need to be linearely independent.

Definition 3.3 (Linear Independence). A set of vectors v1, . . . , vk ∈ V is lin-
early independent if there exists only one trivial solution such that

α1v1 + · · ·+ αkvk = 0 ⇒ α1 = · · · = αk = 0.

We will now show why this is important.

3.1.1 Special Cases

We will first consider some special cases for a vector basis. They were taken from
the linear algebra lecture by Jiwen He at the University of Houston https://

www.math.uh.edu/~jiwenhe/math2331/lectures/sec1_7.pdf. We will briefly
discuss this in the lecture perhaps, but I find it quite interesting.

One vector Consider the set containing one vector {v1}. There is a single
solution x1 s.t. x1v1 = 0, which is x1 = 0.
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Figure 4: Linearly independent and linearly dependent vectors. Drawing
inspired by https://tex.stackexchange.com/questions/414403/drawing-

vectors-on-3-d-coordinate-system.

Two vectors

Example 3.1. Are the following vectors independent? v1 =

(
2
4

)
v2 =

(
1
2

)
No, they are multiples of each other.

Example 3.2. What when we change v2? v1 =

(
2
4

)
v2 =

(
2
3

)
Try to find

c, d ̸= 0 s.t. cv1 + dv2 = 0

The zero vector Consider the set containing the zero vector {v0}. It has
infinitely many solutions k for k · v0 and therefore the vector set cannot be
linearly independent.

Too many vectors

Theorem 3.1. A set containing more vectors than entries in each vector is
linearly dependent. I.e. any set {v1,v2 · · · ,vp} is linearly independent if p > n.

Proof. Construct the matrix A = [v1v2 · · ·vp], an n × p matrix. The equation
Ax = 0 has more variables than equations, and hence the columns of A are
linearly independent. This is trivial to see: In a vector space spanning dimension
n with more than n vectors, some have to be linearly dependent.

All of those approaches bring us closer to our actual solution.
While it is clear in the figure the three vectors span R3, we may not want

to draw the vectors all the time- we also cannot do this with more than three
dimensions, as we do not have a good abstraction.
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To determine linear independence in a more general setting we check for
free variables. If there are free variables, there are infinitely many non-trivial
solutions. Each linear dependence relation corresponds to a nontrivial solution
Ax = 0. In Figure 4, I drew the graphical difference between dependent and
independent vectors.

Example 3.3. Take the three vectors x1 =

1
3
5

, x2 =

2
5
9

, x3 =

−3
9
3

.

We are trying to show that there is only one trivial solution such that

α1 ·

1
3
5

α2 ·

2
5
9

α3 ·

−3
9
3

, which is that α1 = α2 = α3 = 0.

Writing the vectors as a matrix, we get:1 2 −3 0
3 5 9 0
5 9 3 0

 ∼

1 2 −3 0
0 −1 18 0
0 −1 18 0

 ∼

1 2 −3 0
0 −1 18 0
0 0 0 0


Hence x3 is a free variable and we have an arbitrary number of solutions. The
vectors are not linearly independent.

Let’s get back to lattices. We now know how to represent lattices of dimen-
sion n with n or vectors. We have even more constraints, as we only consider
integer multiples of the vectors. We have seen how lattices are discrete versions
of subspaces. In cryptography, we consider q-ary matrices where each vector
entry is taken mod q, some integer.

3.2 Minimum distance

The minimum distance λ of a lattice L is the length of the shortest nonzero
lattice vector.

λ(L) = inf{||v : v ∈ L}{0

Daniele Micciancio has an entire great lecture on the minimum distance, with
an application to prove that any prime number p congruent to 1 mod 4 can be
written as the sum of two squares https://cseweb.ucsd.edu/classes/sp07/
cse206a/lec3.pdf. As mentioned, I would encourage you to think about it at
home!

3.3 Finding a good basis

Having a good basis is an important criterion for the difficulty of a lattice
problem.

Let’s look at Figure 5. If we want to traverse between the points of a lattice,
the upper lattice seems like a much friendlier option. We will first discuss some
preliminaries to then study some algorithms to find good bases, so we can work
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with something close to the upper image, even if we only have v′
1 and v′

1 as a
basis.

v1 =

(
3
0

)
, v2 =

(
2
2

)

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

v′
1 =

(
8
2

)
, v′

2 =

(
5
2

)

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

Figure 5: The same lattice, with two bases. One of them looks slightly more
comfortable to traverse.

3.4 Gram Matrix

By now, we only have a bunch of linearly independent vectors. We take them
to compute a Gram matrix.

Let v1, . . . , vn be vectors in Rm. The entries of the Gram matrix are given
by Gij = vi ·vj . The determinant of G is called the Gram determinant. detG ̸=
0 ⇒ v1, . . . , vn linearly independent.

√
detG is the n-dimensional volume

spanned by v1, . . . , vn. Example: Let v1 = (2, 3), v2 = (1, 4).

G =

(
2 3
1 4

)
·
(
2 1
3 4

)
=

(
13 14
14 17

)
vol(v1, v2) =

√
detG =

√
25 = 5

A good application is computing linear independence, as the vector set is
only linearly independent when the determinant of the Gram matrix is non-zero.
We need it for general lattices, as we obtain a unique vector realization. First,
we are going to study an algorithm you should all know from your introductory
algorithm classes: the Gram-Schmidt Algorithm. It gives us an orthogonal basis
for our vector space, meaning that the vectors are mutually orthogonal.

Lemma 3.1. A basis is orthogonal if for each vi · vj = 0∀i ̸= j.

To add to your mathematical vocabulary, note that a orthonormal basis is
a normalized orthogonal basis.
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Theorem 3.2 (Gram-Schmidt Algorithm). Let v1, . . . , vn be a basis for a vector
space V ⊂ Rm. The following algorithm creates an orthogonal basis v∗1 , . . . , v

∗
n

for V :

v∗1 ← v1

for i = 2..n do

for j = 1..i− 1

µi,j ←
vi · v∗j
∥v∗j ∥2

v∗i = vi −
i−1∑
j=1

µi, j v
∗
j

Given the resulting matrix V ∗, it holds that:

Span{v1, . . . , vi} = Span{v∗1 , . . . , v∗i } ∀i = 1, . . . , n.

3.5 Volume

Leo Ducas also has a really nice intro to the LLL and BKZ algorithms: https:
//heat-project.eu/School/Leo%20Ducas/LLL-BKZ.pdf. Look again at Fig-
ure 5, specifically at the colored area. It is the volume of the lattice.

Definition 3.4 (Volume). Let L be a lattice of dimension n and let F be a
fundamental domain of L. Then the n-dimensional volume of F is called the
volume of L (or sometimes the determinant of L).

Example: Let L be generated by the vectors

v1 =

(
1
0

)
, v2 =

(
1/4√
2

)
.

First, compute the Gram matrix:

G =

(
1 0
1
4

√
2

)
·

(
1 1

4

0
√
2

)
= 2

Lemma 3.2. The volume is equal to the square root of the determinant.
vol(L) =

√
detG =

√
2

But what is the smallest volume of a lattice? It is the so-called fundamental
domain, depicted as the blue-ish area in Figure 5.

Definition 3.5 (Fundamental Domain). Let L be a lattice of dimension n and
let v1, . . . , vn be a basis for L. The fundamental domain is the set

F = [0, 1)v1 + · · ·+ [0, 1)vn.

Lemma 3.3. Every fundamental domain for a given lattice L has the same
volume.
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Figure 6: A lattice with the fundamental parallelepiped between the two shortest
basis vectors.

3.6 Lagrange reduction

We will now look at how to find good, meaning nearly orthogonal bases that
are very close to an ideal solution.

For a basis of two vectors, there is a simple method that is similar to the
Euclidian algorithm: We iteratively reduce the larger of the two vectors by
adding or subtracting an integer multiple of the smaller vector. This algorithm
is sometimes called the Lagrange-Gauss Algorithm. Input: A basis (u, v) of a
2-dimensional lattice L.
Ouput: A Lagrange-reduced basis of L.

if ∥u∥ < ∥v∥ then
swap u and v

while ∥v∥ > ∥u∥ do

r ← u− qv where q =

⌊
u · v
∥v∥2

⌉
u← v

v ← r

return (u, v)

Example 3.4. Input: v =

(
2
0

)
, u =

(
5
1

)
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v = (2, 0)

u = (5, 1)

u = (2, 0)

(−1, 1) = v

v = (1, 1)(−1, 1) = u

Example Task: Solve SVP for the lattice generated by

v1 = (66586820, 65354729)T , v2 = (6513996, 6393464)T .

3.7 Lenstra-Lenstra-Lováz Algorithm (LLL)

This entire section so far has been concerned with finding a good basis. Now,
we will finally learn how we can do this in the general case. If you remember
the Gram-Schmidt orthogonalization, you will find this easy.

Input: A basis (v1, . . . vn) of a lattice L.

Output: A size-reduced basis of L.

Result: Compute all the Gram-Schmidt coefficients µi, j

for i = 2..n do

for j = (i− 1)..1 do

vi ← vi − ⌊µi, j⌉vj
for k = 1..j do

µi, k ← µi, k − ⌊µi, j⌉µj, k

http://thijs.com/docs/lec1.pdf has a nice visualization of this.
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random basis reduced basis

LLL

Figure 7: Two basis vectors, before and after applying the LLL algorithm for
basis reduction.

3.7.1 Size-Reduction

Definition 3.6 (Size-Reduced). A basis v1, . . . , vn of a lattice is size-reduced if
its Gram-Schmidt orthogonalization satisfies |µi, j | ≤ 1

2 .

Definition 3.7 (LLL-Reduced). Let B = {v1, . . . , vn} be a basis for a lattice
L and denote its associated Gram-Schmidt orthogonal basis as v∗1 , . . . , v

∗
n. The

basis is said to be LLL-reduced if it is size-reduced and satisfies for all 1 < i ≤ n.

∥v∗i ∥2 ≥
(
3

4
− µ2

i,i−1

)
∥v∗i−1∥2. (Lovász Condition).

3.7.2 Why Lovász Condition?

- size-reduced
- not LLL-reduced

v1 = (3, 4)
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Changed order

v2 = (3, 4)

v1 = (−2,−1)

- size-reduced
- LLL-reduced

v2 = (−1, 2)

v1 = (−2,−1)

3.8 The LLL-reduced basis is a good basis

Theorem 3.3. Let L be a lattice of dimension n. Any LLL reduced basis
v1, . . . , vn for L has the following property:

n∏
i=1

∥vi∥ ≤ 2
n(n−1)

4 vol(L).

In particular,

∥v1∥ ≤ 2
n−1
2 λ1(L).

Thus an LLL reduced basis solves approximate SVP within a factor of
2(n−1)/2.

Theorem 3.4. Given a basis v1, . . . , vn of a Lattice L the LLL algorithm cal-
culates an LLL-reduced basis in time

O
(
n6 log3 B

)
, where B = max

i
∥vi∥.
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First, need another theorem (sorry):

Theorem 3.5 (Hermite’s Theorem). Every lattice L of dimension n contains
a nonzero v ∈ L satisfying

∥v∥ ≤
√
n vol(L)

1
n .

3.9 Proof sketch

It is clear that the output is LLL-reduced. So we only have to show a finite
number of steps.

� Ll = lattice spanned by v1, . . . vl.

� dl =
∏l

i=1 ∥v∗i ∥2 and D =
∏l

i=1 dl ⇒ det(Ll)
2 = dl.

� D changes only when swapping. More precisely, D is reduced by a factor
of at least (3/4)N (argumentation with the fact that Lovász condition is
violated).

� Bound D from above with Hermite’s Theorem.

3.10 Minkowski Theorems, or: How long is the shortest
vector?

First, we need to define how we measure shortness. We again use high school
mathematics, this time the Euclidian distance:

∥ (c1, c2, . . . , cn) ∥=
√

c21 + c22 + · · ·+ c2n

Theorem 3.6 (Minkowski’s Theorem). Let L ⊂ Rn be a lattice of dimension n.
Let S ⊂ Rn be convex, closed, and symmetric. Suppose that vol(S) ≥ 2n vol(L),
then

S ∩ L ⊋ {0}.

4 Further Reading: Flatter-Fast Approximate
Lattice Reduction

Very recently, the LLL algorithm got an update! I strongly recommend reading
either the paper [RH23] or watching the presentation from CRYPTO 2023(https:
//www.youtube.com/watch?v=KDnFbT6Z3xM. It is quite easy to understand,
and shows how the LLL algorithm becomes closer to the polynomial runtime.
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5 Computational Problems

Disclaimer: parts of the hardness explanations were inspired by Tanja Lange’s
very good series on post-quantum cryptography. If you want to learn more,
here is the lattice lecture link- but the other videos are also excellent. https:

//www.youtube.com/watch?v=UU2EaVXkKLY.
We will denote λ1(L) as the length of the shortest nonzero vector in the

lattice L.

� Shortest Vector Problem (SVP): Find a shortest nonzero vector v in
L, i.e. ∥v∥ = λ1(L). This is very (exponentially) slow if we want to com-
pute an exact solution, but if an approximate solution suffices we can com-
pute this in polynomial time. To understand this problem better, please
refer to Daniele Micciancio’s slides from 2020 which also have beautiful il-
lustrations: https://simons.berkeley.edu/sites/default/files/docs/
14967/sis.pdf

� Approximate Shortest Vector Problem (SVPγ): TODO

� Approximate Shortest Independent Vector Problem (SIVPγ):
TODO

� Closest Vector Problem (CVP): Given a vector w, find closest vector
to w in L. This is an NP-hard problem: When we have a short basis and
close-to-orthogonal vectors, we can simply round.

� Learning with Errors (LWE):

� Learning with Rounding (LWR): Ajtai’s cryptosystem and NTRU

Example 5.1. Given the lattice generated by v1, v2

v1 =

(
8
2

)
, v2 =

(
5
2

)
and given the vector w = (2, 3)T . What is the shortest nonzero vector of L?
Which vector is closest to w? (

−1
2

)
and

(
2
2

)
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5.1 SIS to LWE
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